

ЦЕНТР КОЛЛЕКТИВНОГО ПОЛЬЗОВАНИЯ НАУЧНЫМ ОБОРУДОВАНИЕМ «НОВЫЕ МАТЕРИАЛЫ И РЕСУРСОСБЕРЕГАЮЩИЕ ТЕХНОЛОГИИ»

Научно-исследовательский институт химии ННГУ г. Нижний Новгород

Центр коллективного пользования научным оборудованием «Новые материалы и ресурсосберегающие технологии» (ЦКП «НМиРТ»)

создан в 2012 году на базе лабораторий НИИ химии и лаборатории «Неорганическиетвердотельныематериалы»химическогофакультетаННГУ.

Директор ЦКП доктор химических наук, профессор СУЛЕЙМАНОВ Евгений Владимирович

Исполнительный директор ЦКП кандидат химических наук МИТИН Александр Вячеславович

Основные задачи ЦКП «НМиРТ»

- Эффективное использование имеющегося в ЦКП «НМиРТ» уникального оборудования при решении задач в области химии, физики, экологии и материаловедения в интересах промышленных предприятий и организаций, научно-исследовательских институтов и вузов.
- Обучение ИТР предприятий и организаций по программе повышения квалификации и профессиональной подготовки «Современные технологии производства и аналитического контроля».

В структуру ЦКП входит аккредитованный Испытательный Аналитический Центр. Область аккредитации составляет более 200 аттестованных методик.

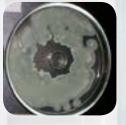
Развитие приборной базы ЦКП «НМиРТ» в 2014–2015 гг. осуществлялось при финансовой поддержке Министерства образования и науки РФ в рамках реализации федеральной целевой программы «Исследования и

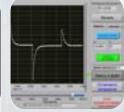
разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014–2020 годы» (мероприятие 3.1.2).

Развитие приборной базы ЦКП «НМиРТ» в 2020 г. осуществлялось при финансовой поддержке Министерства образования и науки РФ в рамках реализации исследовательских программ деятельности НОЦ (мероприятие 3.1.2, Соглашение №075-15-2020-531, 2020 г.)

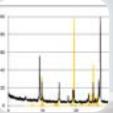
Услуги ЦКП «НМиРТ»

- Анализ воды различных видов
- Анализ воздуха на содержание летучих веществ, радона, высокотоксичных веществ и возможных загрязнителей
- Анализ нефтяных топлив, биотоплив, нефтепродуктов, нефтяных отходов на соответствие ГОСТ и по различным параметрам
- Анализ почвы на содержание тяжелых металлов, токсичных компонентов, радона
- Анализ металлов и сплавов на соответствие ГОСТ
- Анализ химических веществ и материалов.
 Идентификация веществ неизвестного состава
- Анализ и определение класса опасности отходов.
 Химический, биологический и радиационный мониторинг состояния хранилищ промышленных отходов





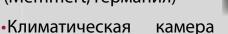


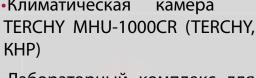


- Обследование территорий, помещений, материалов на наличие источников ионизирующего излучения
- Экспертиза микробиологических повреждений материалов, промышленных, гражданских, жилых и культовых помещений, зданий, сооружений
- Определение термических и термодинамических характеристик образцов
 - Механические испытания образцов на твердость, растяжение, изгиб и другие свойства
- Анализ площади поверхности, размеров микропор, хемосорбции
- Климатические испытания образцов
- Анализ размеров и других характеристик мелкодисперсных частиц
- Получение электронно-микроскопических изображений и элементный анализ поверхности материалов
- Получение спектрограмм ядерного магнитного резонанса (ЯМР)

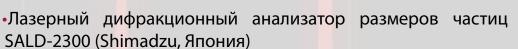
Услуги ЦКП «НМиРТ»

- Определение основного и примесного состава неорганических и органических веществ методом ВЖХ МС
- Определение поведения при размягчении материалов, определение температурного коэффициента линейного расширения
- Определение термодинамических свойств керамических и металлических высококачественных материалов
- Регистрация ЯМР спектров в твердой фазе
- Совместная регистрация спектров флуоресценции, биолюминесценции, хемилюминесценции и электролюминесценции
- Обнаружение и определения наркотических средств, психотропных и других токсических веществ в биожидкостях и тканях человека



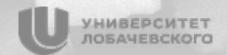

- Проведение испытаний на воздействие УФизлучения по стандартам PV 3930, PV 3929, PV 1303 и др.Анализ размеров и других характеристик мелкодисперсных частиц
- Определение срока службы лакокрасочных покрытий по ГОСТ 9.401-2018
- Испытаний на стойкость к климатическим внешним воздействующим факторам машин, приборов и других технических изделий по ГОСТ Р 51369-99
- Испытаний на устойчивость к воздействиютемпературы по ГОСТ 30630.2.1-2013
- Испытаний на стойкость к воздействию влажности по ГОСТ Р 51369-99
- Испытание пластиков на тепловое старение по DIN 53497




Испытательное и материаловедческое оборудование

- Анализатор площади поверхности, размеров микропор, физической и химической сорбции «Autosorb iQ C» (Quantachrome Instruments, США)
- Динамический ультрамикротвердомер DUH-211S (Shimadzu, Япония)
- Климатическая камера Memmert HPP 260 (Меmmert, Германия)

- Универсальная испытательная машина AG-Xplus-0.5 с термостатирующей камерой TCL-N-P (Shimadzu, Япония)
- Прибор динамического термического анализа DMA 242 E Artemis (NETZSCH, Германия)
- Лабораторный комплекс климатических испытаний


Спектроскопия, хроматография, масс-спектрометрия и химический анализ

- Атомно-абсорбционный спектрометр AA-7000 с полным комплектом приставок, в т.ч. GFA-EX7i (Shimadzu, Япония)
- Атомно-эмиссионный спектрометр с индуктивно

связанной плазмой Prodigy High Dispersion ICP (Teledyne Leeman Labs., США)

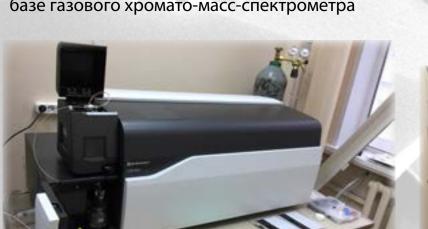
- ЯМР-спектрометр (Agilent DD2 NMR 400WB) для проведения экспериментов с жидкими образцами (Agilent Technologies, США)
- Газовые хроматографы GC-2010 Plus (Shimadzu, Япония)
- Ионный хроматограф (анализ анионов) LC-20 AD SP (Shimadzu, Япония)
- ИК-Фурье спектрометр FTIR-8400S (Shimadzu, Япония)
- Времяпролетный тандемный масс-спектрометр высокого разрешения с матрично-ассоциированной лазерной десорбцией-ионизацией и функцией высокоэнергетической соударительной диссоциации ионов (MALDI) iDplus Performance на базе масс-спектрометра Axima Performance (Shimadzu Group Company, Kratos Analytical, Великобритания)
- Высокоэффетивный жидкостный хроматограф с ситемой

AccuSpot NSM-1 (Shimadzu, Япония)

- Жидкостный хроматограф (ВЭЖХ, гель-проникающая хроматография) Prominence UFLC Fast LC-20AD (Shimadzu, Япония)
- Газовый хромато-масс-спектрометр GCMS-QP2010 с пиролизёром и термодесорбером (Shimadzu USA Manufacturing, Inc, США)
- Газовый хромато-масс-спектрометр PolarisQ/Trace GC Ultra (Thermo Fisher

Scientific, США)

- Анализатор азота/белка Vapodest 30s (C. Gerhardt, Германия)
- Система капиллярного электрофореза «Капель 105М» (группа компаний Люмэкс, Россия)
- Элементный анализатор Elementar Vario EL cube для одновременного определения углерода, водорода, серы, азота и кислорода (Elementar, Германия)
- Спектрофлуориметр Shimadzu RF-6000 (Shimadzu, Япония)
- Спектрофотометр УФ-ВО Shimadzu UV-1800 (Shimadzu, Япония)



- Высокочувствительный комплекс для хроматомасс-спектрометрическогоанализа жидкостей
- Комплекс для медицинских исследований на базе газового хромато-масс-спектрометра

Лабораторное и технологическое оборудование общего назначения

- Гидравлический лабораторный пресс горячего прессования Carver 25-12H
- Вальцы лабораторные электротепловые BP-8175-AL
- •Планетарная шаровая мельница XQM-2A
- Высокотемпературная печь ПМ-1800
- Аппарат вихревого слоя ABC модель 297

Рентгеновские дифрактометры, рентгенофлюоресцентные спектрометры, электронные микроскопы

- Последовательный волнодисперсионный рентгенофлуоресцентный спектрометр Lab Center XRF- 1800 (Shimadzu, Япония)
- Растровый электронный микроскоп JEOL JSM-IT300LV (Jeol, Япония) с энерго- и волнодисперсионными приставками (Oxford Inst., Великобритания)

• Рентгеновскийпорошковыйдифрактометр LabX XRD-6100 (Shimadzu, Япония)

Радиометрическое оборудование

• Дозиметр гамма-излучения ДКГ-02У «Арбитр» (ООО НПП «Доза», Россия)

• Дозиметр-радиометр МКС-АТ 1117М (фирма УП «Атомтех», Белоруссия)

• Комплекс измерительный для мониторинга радона, торона и их дочерних продуктов «Альфарад плюс АРП» (НТМ-Защита, Россия)

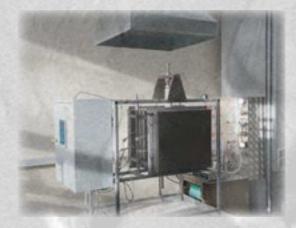
• Комплекс спектрометрический для измерения активности альфа-, бета-и гамма-излучающих нуклидов «Прогресс-БГ-АР» (ООО НПП «Доза», Россия)

Термическое и калориметрическое оборудование

- Автоматический низкотемпературный адиабатический калориметр АК-9.02/ВСТ-21 (ООО «Тегтах», Россия)
- Адиабатический бомбовый калориметр АБК-1В (ЗАО ИНПК «Русские Энергетические Технологии», Россия)
- Реакционный калориметр системы Кальве Calvet 3.0 для определения тепловых эффектов химических реакций (ООО «ТОУ»,

Россия»)

- Дифференциальный сканирующий калориметр Netzsch DSC 204F1 (Netzsch Group, Германия)
- Дифференциально-сканирующий калориметр DSC 204 F1 Phoenix
- Дериватограф DTG-60H (Shimadzu, Япония)
- Высокотемпературный ДСК 404 F3 Pegasus (Netzsch Group, Германия)




Научно-исследовательские работы

Лабораторииинститутахимиивыполняютнаучно-исследовательскиеиопытно-конструкторские работы по следующим направлениям.

Лаборатория технологии	• Синтез и исследование кристаллических материалов с нелинейными оптическими свойствами		
высокочистых материалов	• Разработка технологии оксидных топливных элементов		
	• Синтез и исследование материалов с каталитической активностью		
Лаборатория неорганических материалов	• Получение веществ и материалов для микроэлектроники		
	• Исследование полупроводниковых материалов для решения задач фото- и оптоэлектроники		
	• Разработка материалов и изделий для акустоэлектроники		
Лаборатория радиохимии и радиоэкологии	• Синтез и комплексное исследование кислородных неорганических соединений переходных металлов		
	• Термодинамическое моделирование процессов миграции радионуклидов естественного и техногенного происхождения в природе		
	• Радиометрический контроль территорий и объектов (воды, почвы, атмосферы, пищевых продуктов, строительных материалов, металлов)		
Лаборатория нефтехимии	• Разработка методов получения новых материалов на основе отходов нефтехимической, лесохимической промышленности и органического синтеза		
	• Создание на основе природных и модифицированных полимеров новых материалов для косметологии и медицины		
	• Разработка методов глубокой переработки растительного сырья с получением производных жирных кислот, очищенного глицерина и продуктов на его основе		
Лаборатория лесохимии	• Разработка технологий глубокой переработки жидкофазных продуктов целлюлозно-бумажного производства - сульфатного скипидара сырца, сырого талового масла, талового пека и др.		
	• Разработка технологий глубокой переработки жидкофазных отходов нефтепереработки-дистиллятных и остаточных экстрактов, тяжелых нефтяных фракций, мазутов, битумов и др.		

Лаборатория химической термодинамики	• Изучение термодинамических и свойств неорганических и органических соединений, полимеров методами реакционной и вакуумной адиабатической калориметрии, дифференциально-сканирующей калориметрии		
Лаборатория полимерных материалов	 Разработка технологий производства и применения полимерных материалов (клеи, краски, резины, композиты на основе термопластов и термореактопластов) Разработка технологий высокоэффективного измельчения, перемешивания и интенсификации различных химических процессов с использованием аппаратов вихревого слоя (вихревых реакторов) 		
Лаборатория прикладной химии и	 Разработка водостойких поливинилацетатных клеев и полиуретановых клеев Комплексный химико-экологический мониторинг предприятий и объектов природной среды 		
экологии	• Разработка технологий переработки и утилизации промышленных отходов		
Лаборатория спектроскопии	• Развитие методов атомно-абсорбционного и рентгено-флюоресцентного анализа		
	• Исследование тонких пленок на основе металлов и полупроводников методом рентгено-флюоресцентного анализа		
	• Применение квантово-химических методов в моделировании строения и свойств химических веществ и процессов с их участием		
Лаборатория	• Разработка методик элементного и функционального анализа химических веществ и материалов на их основе		
хроматографии, масс- спектрометрии и	• Разработка и изготовление поверочных смесей для газовой хроматографии		
элементного анализа	• Разработка методик химического мониторинга атмосферы промышленных и гражданских объектов		
Лаборатория микробиологического анализа	 Исследованиеиэкспертизамикробиологическихповрежденийпромышленных, гражданских, жилых и культовых помещений, зданий, сооружений (выявление степенибиоповреждения, причиныбиоповреждения, оценка опасностивлияния биоповреждения на здоровье человека, рекомендации по защите) Исследование устойчивости к биоповреждениям бытовых и промышленных 		
	материалов, изделий и сооружений постандартным и оригинальным методикам • Выявление биоцидной активности новых химических соединений и препаратов, разработка средств микробиологической защиты		

Обучение

Научно-исследовательский институт химии Нижегородского государственного университета им. Н.И. Лобачевского проводит курсы по профессиональной переподготовке и повышению квалификации по программам:

- «Современные технологии производства и аналитического контроля»,
- «Инструментальные методы анализа».

Обучение проводят ведущие преподаватели и научные сотрудники НИИ химии и химического факультета ННГУ им. Н.И. Лобачевского с привлечением специалистов из профильных организаций.

Занятия проводятся в технически оснащенных аудиториях с использованием оборудования НИИ химии.

Обучение начинается по факту формирования групп. Даты и сроки проведения программ оговариваются с Заказчиками. Организациям, направляющим уже сформированные группы (10–20 человек), предоставляется скидка.

Программы реализуются с применением дистанционных технологий.

Могут быть составлены индивидуальные программы курсов по интересующим Заказчика направлениям (темам) в области химии, химического производства, методов контроля и анализа, организации лабораторных и производственных исследований.

По окончании обучения выдаётся документ установленного образца (в зависимости от программы и выбранных модулей): диплом, удостоверение о повышении квалификации, сертификат.

Слушатели программ

- лаборанты химического и инструментальных методов анализа
- руководители испытательных лабораторий
- инженерно-технический персонал предприятий химической промышленности, производственных, научно-исследовательских и учебных химических лабораторий

Контактные данные

Тел.: +7 (958) 548-86-07. E-mail: nvku@yandex.ru. КУЛЕШОВА Надежда Вячеславовна Тел.:+7(831)462-31-52;+7(909)290-98-50.E-mail:ichem@ichem.unn.ru.КУЗЬМИНАДарья

Адрес: 603950, г. Нижний Новгород, пр. Гагарина, д. 23, корпус 5., комн. 246

Сайт: www.ichem.unn.ru, www.ncm.unn.ru

Программа профессиональной переподготовки «Современные технологии производства и аналитического контроля»

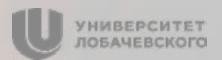
Нормативный срок освоения программы – 250 часов.

Режим обучения: программа обучения может быть реализована как с отрывом, так и без отрыва от работы с использованием дистанционных образовательных технологий.

Требуемый уровень подготовки слушателей: дипломированные специалисты (не имеющие химического образования)

Документ, выдаваемый по окончании курса: диплом о праве ведения профессиональной деятельности в сфере химического лабораторно-производственного контроля.

Краткий учебно-тематический план программы


Наименование раздела		
Базовые профессиональные дисциплины		
Модуль 1. «Общая и неорганическая химия»		
• Тема 1. Основные понятия и законы химии		
• Тема 2. Избранные разделы учения о строении вещества		
• Тема 3. Классы неорганических веществ и их важнейшие свойства		
Модуль 2. «Избранные главы органической химии»		
• Тема 1. Классификация органических соединений и их номенклатура		
• Тема 2. Основные свойства органических соединений		
Модуль 3. Аналитическая химия		
• Тема 1. Состояние вещества в растворе		
• Тема 2. Химические равновесия в растворах		
• Тема 3. Классические химические методы анализа		
• Тема 4. Инструментальные методы анализа		
Специальные дисциплины		
Электрохимические методы химического анализа		
Спектральные методы анализа		
Хроматографические методы анализа		
Методы анализа сточных вод, производственных выбросов и объектов окружающей среды		
Отбор и подготовка пробы к анализу		
Методы математической статистики в химическом анализе		
Охрана труда и техника безопасности на химических производствах		
Итоговая аттестация		

Программа повышения квалификации «Современные технологии производства и аналитического контроля»

Наименование модуля	Объём, час.	Выдаваемый документ
Хроматографические методы анализа	72	-Удостоверениеоповышенииквалификации - Сертификат
Подготовка пробы и современные методы концентрирования в хроматографии	15	Сертификат
Систематическиепогрешностихимическогоанализаи способы их устранения	15	Сертификат
Фотометрический и колориметрический анализ	15	Сертификат
Химический анализ в лабораторном контроле	36	-Удостоверениеоповышенииквалификации - Сертификат
Математическая обработ карезультатов эксперимента и контроль качества	26	-Удостоверениеоповышенииквалификации - Сертификат
Электрохимические методы анализа	15	Сертификат

Программа повышения квалификации «Инструментальные методы анализа»

Наименование модуля	Объём, час.	Выдаваемый документ
Спектральные методы анализа	60	-Удостоверениеоповышенииквалификации - Сертификат
Методы газовой и жидкостной хроматографии	60	-Удостоверениеоповышенииквалификации - Сертификат
Метрология, стандартизация и сертификация	40	-Удостоверениеоповышенииквалификации - Сертификат
Лаборанты и препараторы лабораторий инструментальных методов анализа	72	-Удостоверениеоповышенииквалификации - Сертификат
Хроматографические методы анализа	26	-Удостоверениеоповышенииквалификации - Сертификат
Методы атомной и молекулярной спектроскопии	26	-Удостоверениеоповышенииквалификации - Сертификат

Нормативный срок и стоимость обучения по программам повышения квалификации зависят от выбранного модуля.

Режим обучения: программы обучения могут быть реализованы как с отрывом, так и без отрыва от работы с использованием дистанционных образовательных технологий.

Требуемый уровень подготовки слушателей:

- дипломированные специалисты
- специалисты со средним образованием

Документ, выдаваемый по окончании курса, зависит от выбранного модуля и может представлять собой:

- Удостоверение о повышении квалификации выдается слушателям, имеющим квалификацию в любом разделе химии, подтвержденную дипломом о высшем или среднем специальном образовании. Удостоверение о повышении квалификации выдается при условии, что слушатель прошел обучение в объеме 16 и более часов (оговорено законом об образовании).
- Сертификат выдается слушателям любой квалификации, прошедшим обучение в объеме до 16 часов. Слушатели, не имеющие дипломов о высшем или среднем специальном образовании, при обучении в любом объеме часов получают сертификат.

Инфраструктура исследований и производство

Изделия из стекла

Стеклодувная мастерская принимает заказы на изготовление химической посуды,

приборов и других изделий из различных типов стекла (в том числе молибденового, пирексового, кварцевого).

Начальник стеклодувной мастерской

ГУСЕЙНОВ Талат Алиевич Тел. +7 (831) 462-35-43 Кабинет 423

Жидкий азот

Для обеспечения лабораторий и других подразделений ННГУ жидким азотом в НИИ химии работает криогенная мастерская.

Производительность генератора жидкого азота составляет до 120 литров в сутки. Чистота продукта не менее 99%.

Начальник криогенной мастерской

ШЕВЕЛЕВ Михаил Николаевич Тел. +7 (831) 462-31-57 Кабинет 138

Поверочные газовые смеси

Лаборатория хроматографии НИИ химии более двадцатилет занимается изготовлением поверочных газовых смесей (ПГС) в баллонах под давлением.

Поверочные газовые смеси изготавливаются в соответствии со Свидетельством о регистрации разрядного рабочего эталона.

Руководитель участка

КУЛАГИНАЛидияАлександровна

Тел. +7 (831) 462-35-32

E-mail: chromat@ichem.unn.ru

Кабинет 252

Приёмная директора НИИ химии	Тел./факс: +7 (831) 462-31-47
(секретарь)	E-mail: ichem@ichem.unn.ru
	Тел.: +7 (831) 462-31-51
Бухгалтерия	E-mail: buchgalt@ichem.unn.ru
Центр коллективного пользования	Тел: +7 (906) 357-35-79
научным оборудованием «НМиРТ»	E-mail: ckp@ichem.unn.ru
Лаборатория технологии	Тел.: +7 (831) 462-35-35
высокочистых материалов	E-mail: suev@unn.ru
Лаборатория неорганических	Тел.: +7 (831) 462-31-48
материалов	E-mail: laist@ichem.unn.ru
Лаборатория радиохимии и	Тел.: +7 (831) 462-31-49
радиоэкологии	E-mail: milelet@ichem.unn.ru
Лаборатория нефтехимии	Тел.: +7 (831) 462-35-38
Лаооратория нефтехимий	E-mail: llsem@ichem.unn.ru
Лаборатория лесохимии	Тел.: +7 (831) 462-31-47
Лаооратория лесохимии	E-mail: malazarev@ichem.unn.ru
Лаборатория полимерных	Тел.: +7 (831) 462-35-34
материалов	E-mail: eazakh@ichem.unn.ru
Лаборатория химической	Тел: +7 (831) 462-35-36
термодинамики	E-mail: smirnova@ichem.unn.ru
Лаборатория прикладной химии и	Тел.: +7 (831) 462-35-39
экологии	E-mail: vfzan@ichem.unn.ru
Лаборатория спектроскопии	Тел.: +7 (831) 462-35-42
лаооратория спектроскопии	E-mail: mashin@chem.unn.ru
Лаборатория хроматографии,	Тел.: +7 (831) 462-35-37
масс-спектрометрии и элементного анализа	E-mail: ckp@ichem.unn.ru
Лаборатория	Тел.: +7 (831) 417-05-93, 417-05-57
микробиологического анализа	E-mail: vfsmirnov@ichem.unn.ru
Лаборатория ресурсосберегающих	Тел.: +7 (831) 462-35-44
биотехнологий	E-mail: vaegorov@ichem.unn.ru

