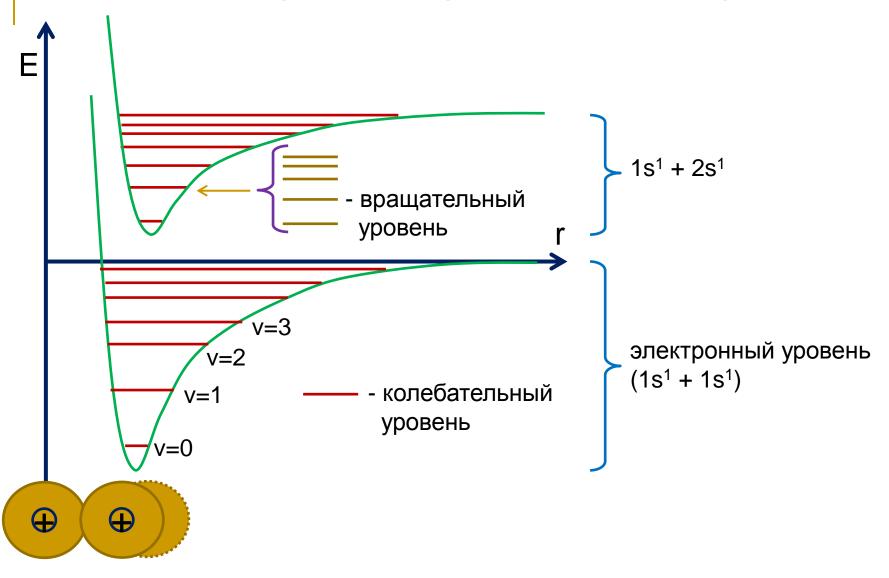
ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ В ХИМИИ

Лекции для студентов 3-го курса дневного отделения химического факультета ННГУ им. Н.И. Лобачевского

Лекция 13-14. Колебательная спектроскопия (ИКС, СКР)

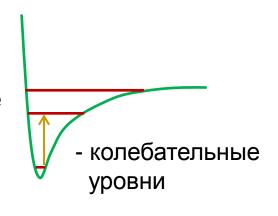
Лектор: д.х.н., профессор кафедры химии твердого тела ХФ ННГУ Сулейманов Евгений Владимирович

Литература (специализированная)


- 1. Накамото К. ИК спектры и спектры КР неорганических и координационных соединений. М.: Мир. 1991. 536 с.
- 2. Браун Д., Флойд А., Сейнзбери М. Спектроскопия органических веществ. М.: Мир. 1992. 300 с.
- 3. Иоффе Б.В., Костиков Р.Р., Разин В.В. Физические методы определения строения органических соединений. М.: Высшая школа. 1984. 336 с.
- 4. Рабек Я. Экспериментальные методы в химии полимеров. В 2-х частях. Ч.1. М.: Мир. 1983. 384 с.
- 5. Мальцев А.А. Молекулярная спектроскопия. М.: Издво МГУ, 1980. 272 с.

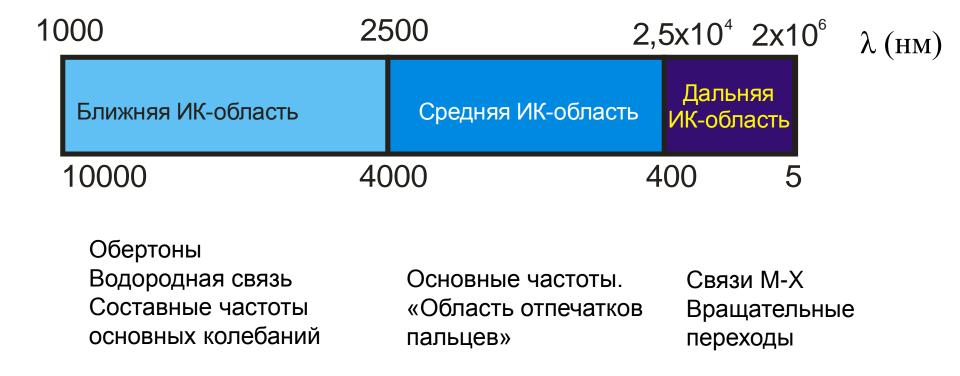
Примечание: см. также общую литературу по ФМИ

Структура лекции


Энергетические состояния молекул, виды молекулярной спектроскопии, постановка задачи История открытий Нормальные колебания многоатомной молекулы ИК спектроскопия Спектроскопия КР Приложения ИКС и СКР

Энергетические уровни двухатомной молекулы

Виды молекулярной спектроскопии


Электронная спектроскопия Колебательная спектроскопия (ИКС, СКР) Микроволновая (вращательная) спектроскопия

$$E_{n,n+1}^{3n} \sim 0,1-10^4$$
 $= 10-10^6$ кДж/моль

$$E^{Bp}_{j,j+1} \sim 10^{-5} - 10^{-3} - 10^{-3} = 10^{-3} - 0,1 кДж/моль$$

$$\frac{N_{i+1}}{N_i} = e^{\left(-\frac{\Delta E_{i,i+1}}{kT}\right)}$$

Области электромагнитного излучения (ИК диапазон)

Колебательная спектроскопия

История открытий

Уильям Гершель 15.11.1738 – 25.09.1822

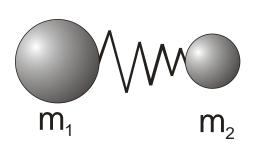
1800 г. – У. Гершель открыл инфракрасное излучение

История открытий

Открытие комбинационного рассеяния света (эффект Рамана), февраль 1928 г. (Москва, Калькутта)

Леонид Исаакович Мандельштам

Григорий Самуилович Ландсберг

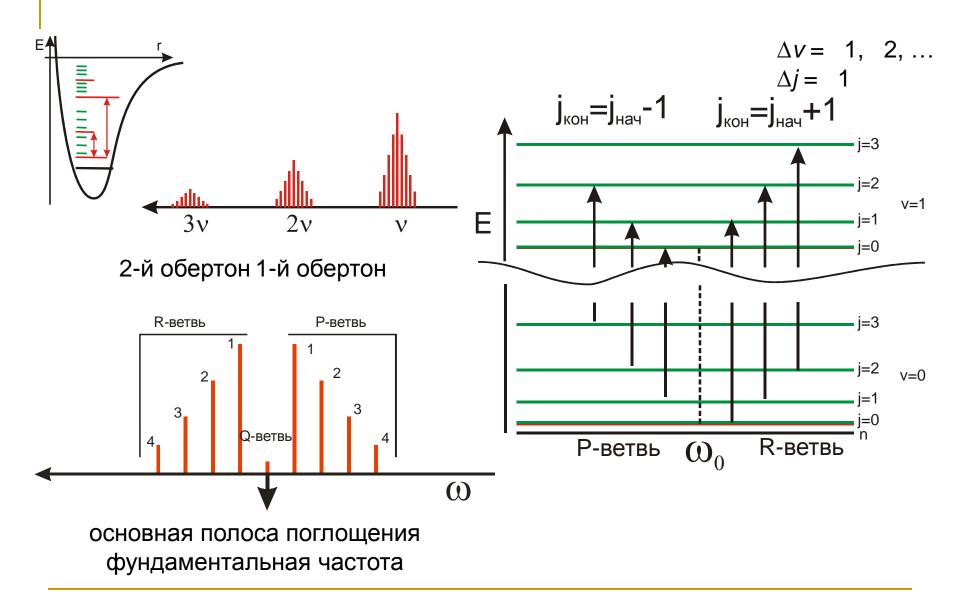

Чандрасекхара Венката Раман

Кариаманикам Сриниваза Кришнан

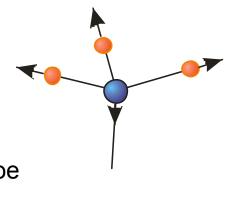
1930 год – Ч.В. Раману присуждена Нобелевская премия по физике

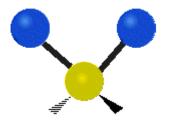
Физические основы

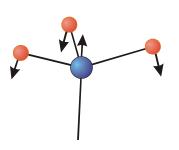
$$E_v = hc[\omega_e(v+1/2) - \omega_e x_e(v+1/2)^2]$$
 $\omega_e - частота собственных колебаний $\omega_e x_e - постоянная ангармоничности $v -$ колебательное квантовое число $(0, 1, 2, ...)$ $\Delta v = 1$$$

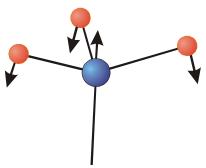

$$\omega_{\rm e} = \frac{1}{2\pi c} \sqrt{\frac{k_{\rm e}}{\mu}}$$

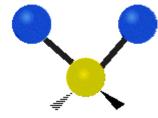
$$\omega_{
m e}=rac{1}{2\pi c}\sqrt{rac{{
m k}_{
m e}}{\mu}}$$
 $\mu=rac{m_1 imes m_2}{m_1+m_2}$ - приведенная масса

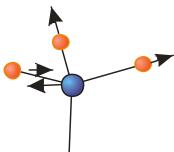

 $\mathbf{k}_{\scriptscriptstyle{\mathsf{L}}}$ – силовая постоянная связи

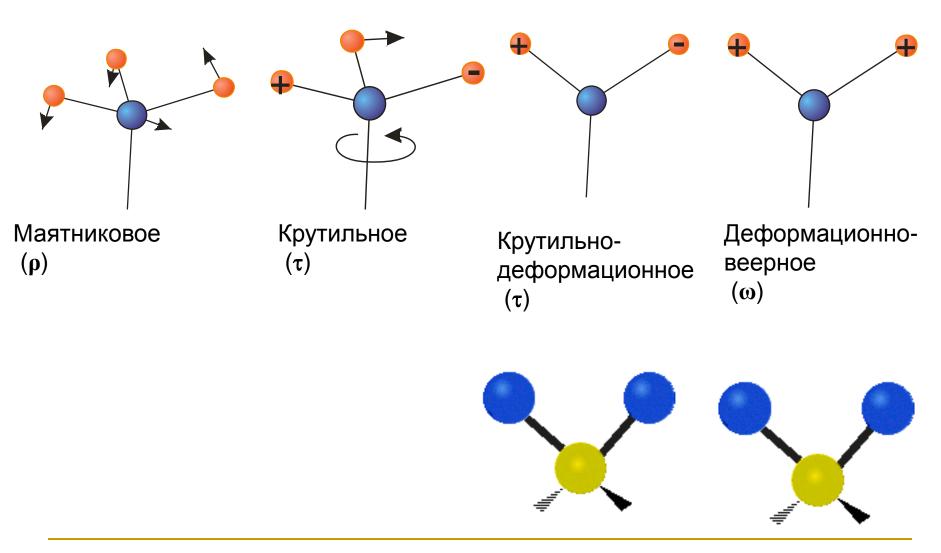

$$k(C \equiv C) > k(C = C) > k(C - C)$$


Физические основы


Типы колебаний


Валентное симметричное $(\mathbf{v}(\mathbf{s}))$

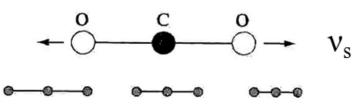

Валентное антисимметричное (v(as), v(a))

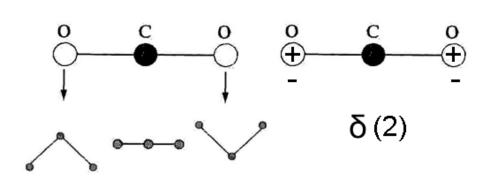

Деформационное

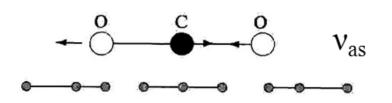
Деформационное антисимметричное $(\delta(as))$

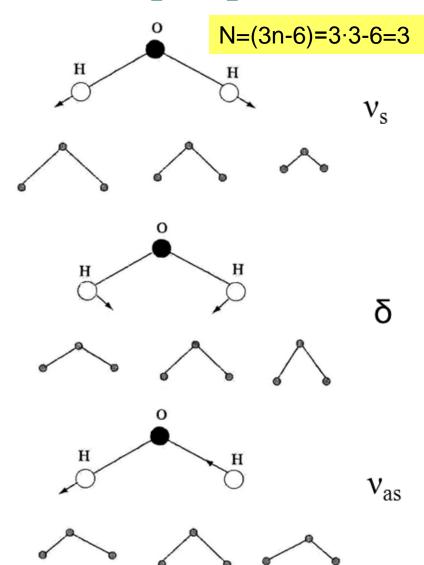
Типы колебаний

Нормальные колебания

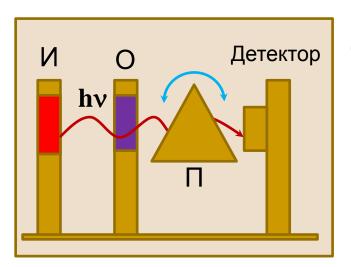

Число нормальных колебаний (N):

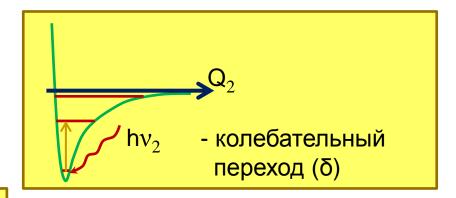

N=(3n-6) - для нелинейных молекул

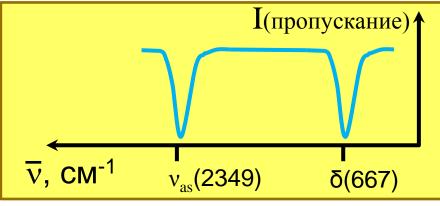

N=(3n-5) - для линейных молекул


Нормальные колебания молекул CO₂ и H₂O

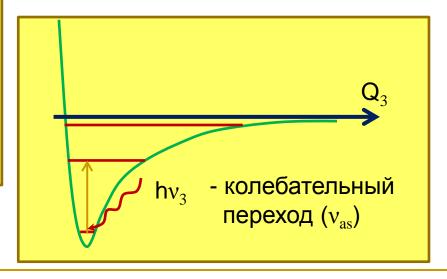
$$N=(3n-5)=3\cdot3-5=4$$







ИК-спектроскопия. Принцип метода.



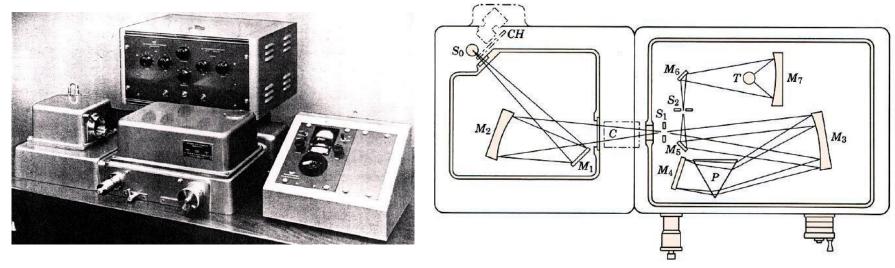
- И источник ИК излучения (полихроматич. спектр)
- О исследуемый образец
- П призма (дифракционная решетка, монохроматор)

ИК-спектр CO_2 (газ)

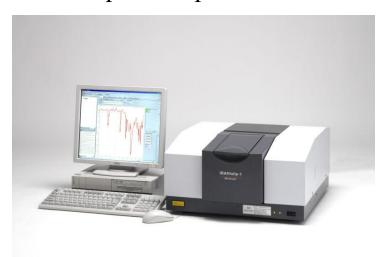
Правила отбора для ИК спектроскопии

Правило отбора: в ИК спектре проявляются колебания, приводящие к изменению дипольного момента молекулы (µ)

$$(d\mu/dQ)_{Q=0} \neq 0$$


dµ/dQ=0 колебание не активно в ИК спектре

dµ/dQ≠0 колебание активно в ИК спектре



 $v_{as} = 2349 \text{ cm}^{-1}$

ИК-спектроскопия. Техника эксперимента.

Первый серийный ИК-спектрометр Perkin Elmer Model 12. 1944 г.

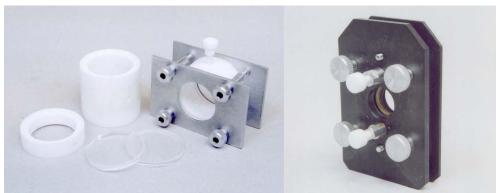
Современный ИК-спектрометр

ИК-спектроскопия. Техника эксперимента.

Исследовательские комплексы, включающие ИК-спектрометр

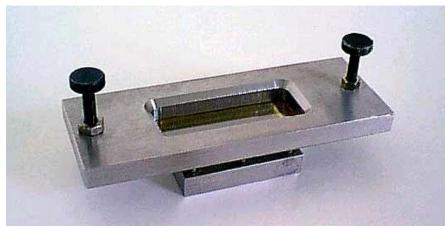
ИК-спектроскопия. Техника эксперимента (Аксессуары)

Держатель таблеток


Приставка для измерения пропускания пластин

Пресс и матрица для приготовления таблеток

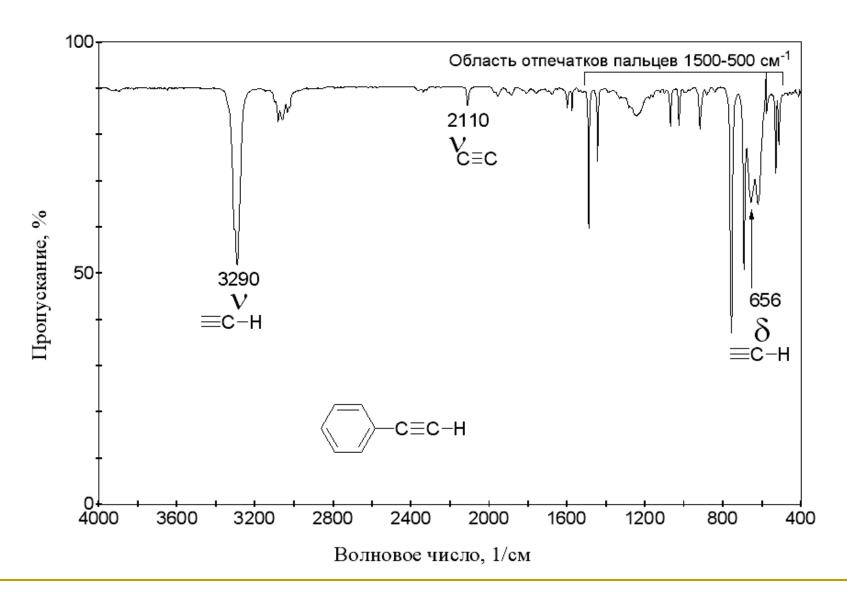
Кювета газовая



Кювета жидкостная разборная

ИК-спектроскопия. Техника эксперимента (Аксессуары)

Приставка однократного нарушенного полного внутреннего отражения (НПВО)



Приставка многократного нарушенного полного внутреннего отражения (МНПВО)

Приставка зеркального отражения ПЗО

ИК-спектроскопия. Пример ИК спектра.

ИК-спектроскопия. Особенности метода.

Способы подготовки образца

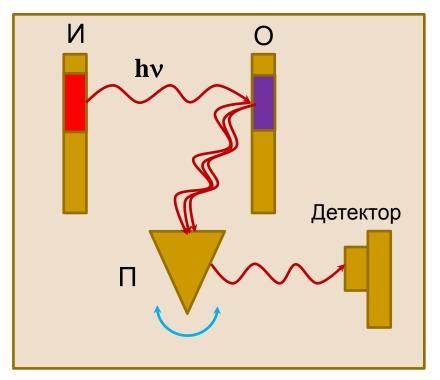
- Однородный образец (пластина, жидкость между прозрачных в ИК области пластин)
- Съемка с поверхности
- Суспензия исследуемого вещества в вазелиновом масле
- Таблетка смеси исследуемого вещества с бромидом калия

Другие особенности

- Неразрушающий метод (при определенных способах записи спектра)
- Метод обеспечивает точные измерения, не требующие внешней калибровки
- Можно увеличить скорость записи спектра, получая сканирование каждую секунду, тем самым увеличить чувствительность быстрые сканирования суммируются, чтобы уменьшить долю случайных шумов
- Прибор механически прост, имеется только одна подвижная часть.

КР-спектроскопия. Физические основы.

Рэлеевское рассеяние - рассеяние света без изменения длины волны на частицах, неоднородностях или других объектах. Эквивалентная формулировка — рассеяние света на объектах, размеры которых меньше его длины волны.

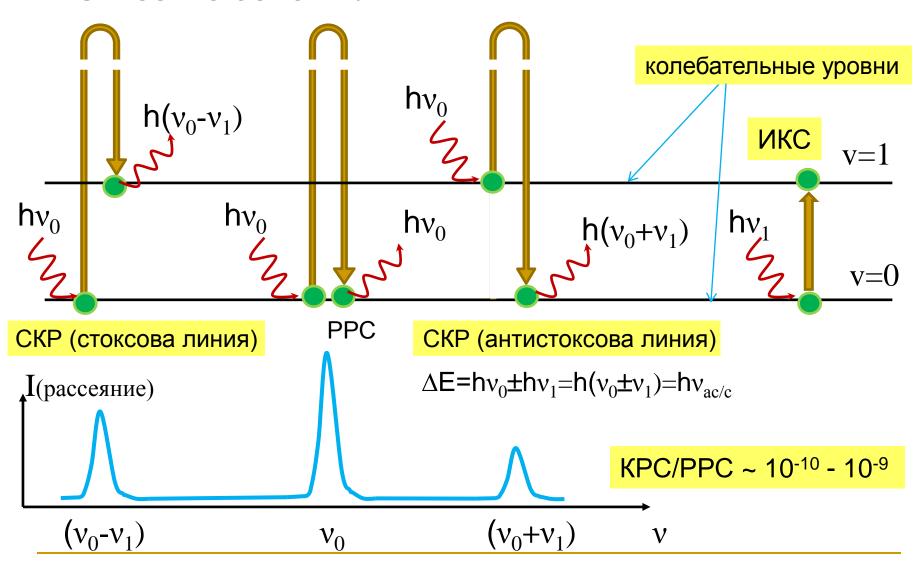


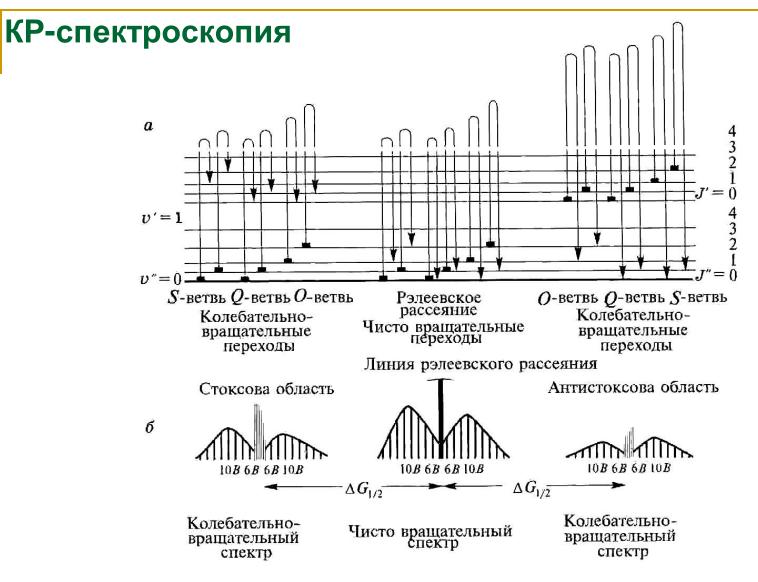
Джон Уильям Стретт (лорд Рэлей) (12.11.1842 – 30.06.1919)

Комбинационное рассеяние света (эффект Рамана) - рассеяние оптического излучения на молекулах вещества (твёрдого, жидкого или газообразного), сопровождающееся изменением его частоты.

КР-спектроскопия. Техника эксперимента.

Схема КР-спектрометра

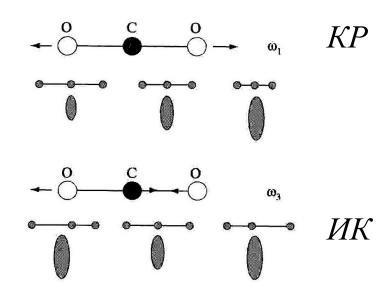




Современный КРспектрометр (RMP-300)

- И источник монохроматического излучения (лазер, λ ~1000 нм)
- О исследуемый образец
- П призма/монохроматор, интерферометр)

Спектроскопия комбинационного рассеяния (СКР). Физические основы.


Схематическое представление вращательных и колебательновращательных переходов при KP: a — схема переходов; δ — вращательный и колебательно-вращательный спектры KP.

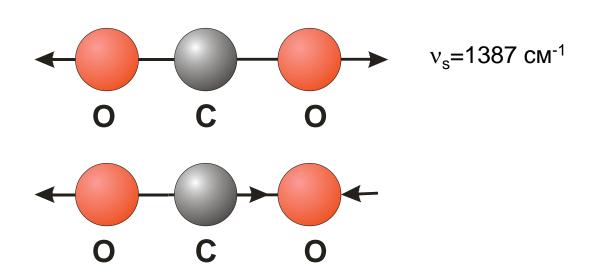
Правила отбора для спектроскопии КР

$$\mu = \alpha E + \beta E^2 + \gamma E^3 + ... \qquad \mu - \text{индуцированный дипольный момент} \\ \alpha - \text{поляризуемость молекулы} \\ I = \frac{16\pi^4 v^4}{3c^2} |\mu|^2$$

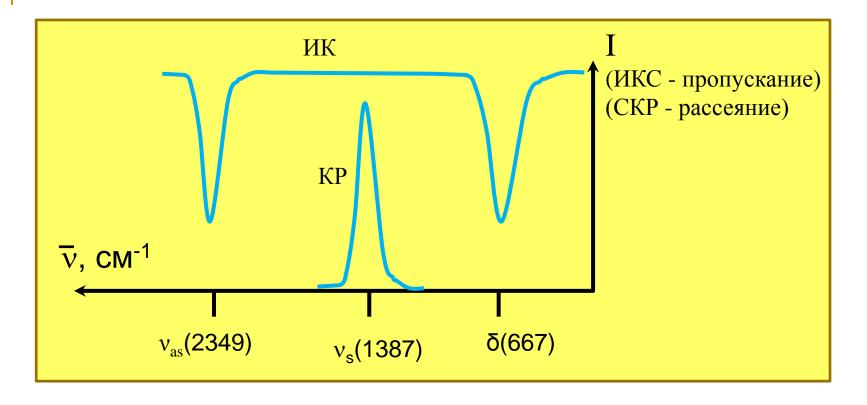
$$I = \frac{16\pi^4 v^4}{3c^2} |\mu|^2$$

$$\alpha = \begin{bmatrix} \alpha_{xx} & \alpha_{xy} & \alpha_{xz} \\ \alpha_{yx} & \alpha_{yy} & \alpha_{yz} \\ \alpha_{zx} & \alpha_{zy} & \alpha_{zz} \end{bmatrix}$$

КР-спектроскопия. Физические основы.


Правило отбора:

В спектре комбинационного рассеяния проявляются колебания, приводящие к изменению поляризуемости молекулы.


$$(d\alpha/dQ)_{Q=0} \neq 0$$

dα/dQ=0 Колебание активно в спектре КР

dα/dQ≠0 колебание не активно спектре КР

Колебательный спектр $CO_2(r)$

Правило альтернативного запрета: если молекула имеет центр симметрии, то колебания, активные в ИК-спектре, неактивны в КР-спектре, и наоборот

ИК: колебания полярных групп (CO, -NH₂, -OH)

КР: колебания неполярных групп (C=C, CΞC)

КР-спектроскопия. Особенности метода.

Может использоваться для исследования твердых, жидких и газообразных образцов

Не требуется пробоподготовка

Неразрушающий метод анализа

Не требует вакуумирования

Быстрый метод, спектр регистрируется достаточно быстро

Можно работать с водными растворами (в отличие от ИК-спектроскопии)

Можно работать в стеклянной посуде

Можно использовать волоконную оптику для удаленной регистрации спектра

Можно изучать объекты ~1 мкм (микроскопия)

недостатки

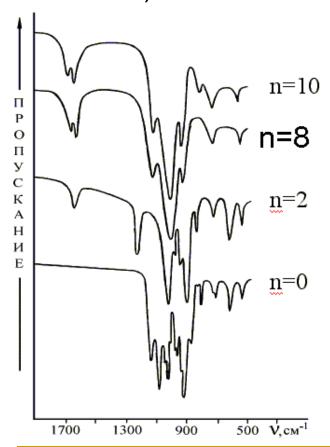
Трудности при работе с малыми концентрациями Возможно влияние флуоресценции

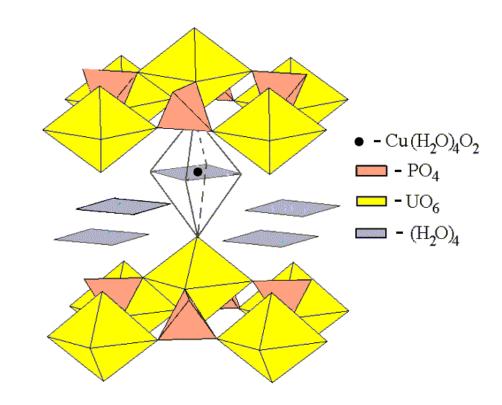
Задачи, решаемые колебательной спектроскопией

- идентификация веществ,
- определение отдельных химических связей и групп в молекулах
- исследование внутри- и межмолекулярных взаимодействий, водородных связей
- исследование различных видов изомерии,
- исследование фазовых переходов,
- исследование адсорбирующих молекул и катализаторов,
- обнаружение микропримесей веществ, загрязняющих окружающую среду
- измерение размера наночастиц
- исследование распределения напряжений, дислокаций
- измерение степени структурного беспорядка в различных твердых веществах
- определение энергетических диаграмм молекул.

и др.

Области применения колебательной спектроскопии

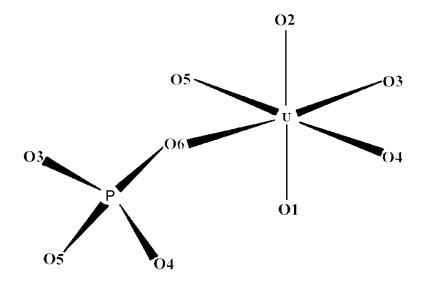

- материаловедение при исследовании любых типов неорганических и органических материалов, включая полупроводниковые элементы
- нанотехнологии для исследования любых типов наноструктур в минералогии при изучении драгоценных камней, минералов
- в органической химии при изучении механизмов реакций и характеризации продуктов синтеза
- при разработке и контроле различных производственных процессов
- при проведении криминалистической и таможенной экспертиз
- в фармацевтике при разработке и контроле производства таблетированных форм и кремов
- в косметологии для оценки эффективности косметических средств
- в биологии для изучения культур микроорганизмов, клеточных культур, тканей и природных волокон.


Решение структурных задач с помощью колебательной спектроскопии

• Полный фактор-групповой анализ

• Концепция групповых частот (квазимолекулярный спектральный

анализ)



ИК спектры соединений $Cu(PUO_6)_2 \cdot nH_2O$ и кристаллическая структура $Cu(PUO_6)_2 \cdot 8H_2O$

Отнесение полос в ИК спектре и спектре КР соединения $Cu(PUO_6)_2 \cdot 8H_2O$

ИК, см ⁻¹	КР, см ⁻¹	Отнесение
1109 cp.	1110	ν ₃ (PO ₄ ³⁻)
1000 c.	1000	
	990 cp.	ν ₁ (PO ₄ ³⁻)
616 сл.		ν ₄ (PO ₄ ³⁻)
543 cp.		
462 пл.	404 сл.	ν ₂ (PO ₄ ³⁻)
297 ср.	290 сл.	ν(U-PO ₄ ³⁻)
928 cp.		$v_3(UO_2^{2+})$
918 cp.		
811 сл.	825 c.	ν ₁ (UO ₂ ²⁺)
797 сл.		
256 ср.		ν ₂ (UO ₂ ²⁺)
1650 cp.		ν ₂ (H ₂ O)
1670 cp.		

См. также слайд №22